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Evaluation of geostatistics and wavelets for identifying relations between imagery and 
different spatial resolutions and for data compression 

Introduction 

This report embraces three aspects of recent work: a visit to the University of Reading by 
James Shine of the Topographic Engineering Center (TEC) for one week in May 1999 and Dr 
Oliver's visit to TEC in July 1999 for three days; cokriging of Dr P. Krause's temperature data 
for Korea; and a partial analysis of the ground cover data for A. P. Hill. 

Summary of work with James Shine 

Dr Oliver and Mr Shine worked together for a week in May 1999 when Mr Shine visited the 
University of Reading. This time was used for analyses, a draft outline of a proposed paper 
and discussion. Mr Shine wished go over the analysis for computing the variogram from large 
sets of data. We experimented with some of the 1-m data for A. P. Hill using the program 
ggrid3.f, written for the project by Professor R. Webster. Mr Shine wanted to develop his 
experience in this so that he can compute variograms from large data sets within a short time. 
He left reading feeling confident about this. In addition we also fitted models to the variograms 
with Genstat and again this reinforced what we did together at TEC last year. 

A considerable part of the week was spent discussing the results from the final report of 
contract No. N68171-97-C-9029 which we now wish to publish. We examined previous issues 
of the Internationaljournal of Remote Sensing to see whether this was suitable for this work. 
We decided that it was, but that as the content will be small compared with the previous paper 
we shall submit it as a Letter. This is confusing because this form of publication is a short paper 
in essence and will suit our needs perfectly in this instance. An outline of the paper has been 
prepared and the introduction written. We shall continue with this when Dr Oliver visits TEC 
in July. 

The remaining time was spent discussing the recent work on the ground survey data. Part of 
this work is included in this report. However, there is still some way to go on this. We also 
discussed future work. One idea is to compute a moving variogram to deal with the problems 
of local trends or non-stationarity in the data. This arises at A. P. Hill for example where there 
are water bodies and areas of hard standing and buildings. The computer code for this will be 
written as part of the current contract, but any testing of it will have to be done in the future. 

Dr Oliver visited TEC in July 1999 for three days. On arriving she gave a short briefing to Mr 
W. Clarke (head of section) on the status of our current research, how this builds on work 
done in the past and where any future research is likely to develop. On the second day Dr 
Oliver had a meeting with Dr Roper together with Mr Shine. This was to discuss present work 
and also spatial investigations more generally. Dr Roper invited Dr Oliver to give a general 
briefing to TEC next year on the research to date. 



Part of each day was spent with Mr E. Bosch. We have been exploring a one-dimensional set 
of radon values in soil where we know there are distinct boundaries. The aim is to see how 
wavelet analysis deals with this variation and also that of the residuals from the geological 
classes. We explored different levels of resolution for the raw data. This work is still to be 
completed. 

The work with Mr Shine began by extracting part of the data from the SPOT image and the 
digital elevation model (DEM). We plan to explore the relations in this smaller file in more 
detail because statistically the relation between the wavebands and the DEM was weak, yet it 
was fairly strong for the NIR band visually. The weak relation might arise from the areas of 
hard standing and buildings which have no particular relation with the elevation. The program 
ggrid.f would not work with these small files - Mr Shine has since discovered that the zero 
origin has caused part of the problem. 

We continued the discussion about the Letter for IJRS and have decided to use NDVI of 
subsets from the whole site covered by the 1 m data. This work is being done at present. 



Parti 

Cokriging temperature data in Korea 

The data for the analysis were provided by Dr P. Krause. They comprised temperature and 
elevation records at 100 sites irregularly scattered over Korea. In addition elevation had been 
measured at another 565 sites. Table 1 gives the summary statistics for these variables at places 
where they were both measured. Both have distributions that depart from normality, in 
particular. Although a geostatistical analysis does not assume that the data are normally 
distributed it is generally advisable to transform the data to a near-normal distribution for the 
variogram analysis to stabilize the variances. 

Both variables were transformed to common logarithms and for elevation the skewness 
decreased markedly and the transformed data are close to normal. Temperature departs less so 
from a normal distribution, but after transformation to common logarithms the departure from 
normality increases. 

Table 1 Summary statistics for Elevation and Temperature 

Elevation Temperature Log Elevation Log Temperature 
Number of observations 100 100 100 100 
Mean 403.45 53.02 5.17 3.97 
Minimum 8.00 33.00 2.08 3.50 
Maximum 4546.00 62.00 8.42 4.13 
Variance 574928.23 24.95 1.53 0.011 
Standard deviation 758.24 4.99 1.24 0.103 
Skewness 3.836 -1.45 0.21 -1.93 

The data were also examined for trend as part of the exploratory data analysis. This would 
generally be normal practice when one of the variables is elevation because it can vary in a 
predictable way. However, in this case it was temperature not elevation whose variation 
comprised a large element of trend. For elevation linear trend counted for 13.8% of the 
variation, and quadratic trend for 21.0%. This is much less than expected. It is marginal as to 
whether this degree of trend should be removed, but it was to ensure that the analysis was 
reliable. For temperature the trend was much greater: a linear trend accounted for 74.9% of the 
variation and the quadratic one 77.9%. Clearly a linear trend model is adequate for describing 
the trend for temperature. 

The aim of this analysis was to assess whether temperature could be estimated more reliably 
with the use of additional information from elevation. In geostatistics the method used is 
known as cokriging. The value of the method is that it can be used to estimate a property that 
is more expensive to measure using information from another variable with which it is 
coregionalized and that is cheaper to measure or that does not change with time. This is 
particularly true in general for temperature and elevation. There is a physical reason for their 
relation and elevation does not change substantially in the short term. Therefore, once a digital 
elevation model has been produced it is a source of inexpensive and reliable information. 
Cokriging depends on the two (or more) variables being strongly correlated.    From the 



correlation matrix below it is clear that the correlation between elevation and temperature is 
moderate. 

Table 2. Correlation matrix for temperature and elevation in Korea. 

*** Correlation matrix *** 

Elevation 1     1.000 
Temperature 2   -0.741 1.000 

1 

This level of correlation would suggest that it is worthwhile pursuing a coregionalization 
analysis. The classical correlation coefficient does not take spatial location into account, 
therefore the relation spatially could be either better or worse. 

Cokriging: Theory 

The cross variogram 

This is the logical extension of ordinary kriging to situations where two or more variables are 
spatially interdependent or co-regionalized. The first stage is to model the coregionalization. 
The two regionalized variables, Zu(x) and Zv(x), denoted by u and v, both have an 
autovariogram defined by: 

ra(h) = JE[{Z„(x)-Zli(x + h)}2] 

and 

rv(h) = |E[{Zv(x)-Zv(x + h)}2J, 

and a cross variogram defined as: 

rin,(h) = |E[{Zu(x)-Zu(x + h)}{Zv(x)-Zv(x + h)}]. 

The cross variogram function describes the way in which u is related spatially to v. Provided 
that there are sites where both properties have been measured y„v(h) can be estimated by: 

1 m(h) 

^(h) = ^7r7Z[{z„«-za(x + h)}{zv(x)-zv(x + h)}]. 
2»j(h) I=1 

which provides the experimental cross variogram for u and v. 



The cross variogram can be modelled in the same way as the autovariogram, based on the 
linear model of coregionalization. Each variable is assumed to be a linear sum of orthogonal 
random variables Y(x): 

<fc=i y=i 

in which 

E[Zu(x)] = fiu. 

^E[{YJ
k(x)-YJ

k(x + h)}{Y;(x)-Y;(x + h)}] 

= gk (h),   positive for k = k' andj = / 

= 0   otherwise 

The variogram for any pair is then: 

K     2 

We can replace the products in the second summation by bk
m to obtain: 

nv(h) = IXs*(h). 
k=\ 

The variogram for any pair of variables u and v is: 

The bk
v are the nugget and sill variances of the independent components if they are bounded, 

and for unbounded models they are the nugget variances and gradients. 

Cokriging 

Once to coregionalization has been modelled it can be used to predict the spatial relations 
between two or more variables by cokriging. There are generally two reasons for using 
cokriging: 

1. Where one variable is under-sampled compared with another with which it is 
correlated. The sparsely sampled property can be estimated with greater precision by 
co-kriging because the spatial information from the more intensely measured one is 
used in the estimation. The increase in precision depends on the degree of under- 
sampling and the strength of the coregionalization. 



2. When values of all of the variables are known at all sample points, cokriging can 
improve the coherence between the estimated values by taking account of the 
relation between them. 

If there are V variables, / = 1,2,..., V, and the one to be predicted is u, which in our case has 
been less densely sampled than the others. In ordinary cokriging the estimate is the linear sum: 

V     n, zz 
l=\ 1=1 

za(£)=ZZv,(s,x 

where the subscript / refers to the variables, of which there are V, and the subscript /' refers to 
the sites, of which there are m where the variable / has been measured. The 
Xu are the weights, satisfying: 

"i 

Z X^H=1,    l-u;     and        Z^/=0'       '**u- 

These are the non-bias conditions, and subject to them the estimation variance of 
Zu (B) for a block, B, is minimized by solving equations : 

V     n, 

ZZ Vw(x„x,) + ¥, = rm(*j,B) for a*1 ^l,2 to Fand ah>l,2 to nv. 
i=\ i=i 

The quantity yiv(xh x})  is the cross semivariance between variables / and v at sites / and j, 
separated by the vector JC,- x/, yuv(Xj,B) is the average cross semivariance between a site./ and 

the block B, and vj/y is the Lagrange multiplier for the vth variable. The cokriging variance is 
obtained from: 

V     n, 

l=\ 1=1 
^{B) = YL^Yui^j,B) + Vu-Yu,{B,B) 

where yua (B,B) is the integral of ym (h) over B, i.e. the within-block variance of u. 

Analysis and results of cokriging 

Cross variogram 

The experimental autovariograms for the raw values of elevation and temperature were 
computed first. They showed some similarity in their shapes and also ranges of spatial 
dependence  (Figure 1). The autovariograms were then computed on the residuals from the 



linear trend for temperature and on the residuals from the quadratic trend for elevation. In 
addition the elevation was transformed to common logarithms and the variogram was also 
computed from the transformed data. Considering that the level of skewness is substantial 
reducing it appears to have had little effect on the variogram. In fact it is less clearly bounded 
and less related to the variogram of temperature than that for the raw data. The variograms 
computed from the residuals were more erratic and more difficult to model than those of the 
raw data. Since the trend appears to be regional in the case of temperature, at the longer lags, I 
decided to do the analysis on the raw data and the residuals. For kriging it is the first few lags 
that are important and these are less likely to be affected by the trend than the longer lags. 

Although it is important to check the data in this way, the changes did not appear to improve 
the variogram substantially. This will become evident when the cokriging results are discussed. 
However, cokriging was carried out on the raw data and the detrended data. During the 
remaining time on the project I might do some further tests, but I do not expect any major 
changes. 

The experimental auto- and cross-variograms for the raw data are given in Figure 1. They have 
a similar form and the individual autovariograms were fitted best by an exponential model with 
a distance parameter of about 0.86 units. The same form of model must fit all of the 
variograms and the range or distance parameter must be the same. The nugget variance, the 
sills of bounded models and the slope of unbounded models can be different. The 
coregionalization was modelled by an exponential function with a distance parameter of 0.86 
units of latitude and the lower triangle of the sills is given below. The coregionalization of the 
residuals for elevation and temperature were also modelled and the values used for kriging. 
The variograms for the residuals were fitted best by a spherical function with a range of 1.01 
units of latitude. 
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Figure 1: Experimental autovariograms of a) temperature and b) elevation, and c) the 
experimental cross variogram. 



Table 3. Models of coregionalization fitted to the raw data and the residuals from the trend for 
temperature and elevation. 

Fitted sills in lower triangle for the raw data Fitted sills in lower triangle for 
the residuals 

Nugget 0.0 Elevation 0.0 Nugget 

Variances 0.0            0.6 Cross    Temperature 0.0            1.4 variances 

Sill 350826.2 Elevation 258385.0 Sill 
Variances -1169.6   6.3 Cross     Temperature -821.4   2.6 variances 

Figure 2 shows the experimental cross variograms, the fitted models together with the hull of 
perfect correlation (the two outer lines). The cross variogram of the residuals coincide with the 
hull showing a strong correlation. That for the raw data is close to the hull. 

a) Temp x Elevation b) 
Temp x Elev residuals 
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Figure 2: a) Cross variogram of the raw data and b) cross variogram of the residuals, with the 
hulls of perfect correlation. 

2.0 

Cokriging 

The first analysis was to test the modelling and to assess the effects on the estimates of using 
either the raw data or the residuals. Twenty five of the 100 sites were removed from the raw 
data and the residuals. Using the models of coregionalization given above the values at the 25 
validation points were estimated by punctual cokriging for the raw and residual data, 
respectively. In addition the raw data were used for autokriging the validation points. The 
original values, the estimates and the standard errors are given in Table 2. 



For every validation point the cokriged estimate has a smaller standard error than the 
autokriged estimate. The differences are small, but they show consistently that cokriging 
confers a small benefit in terms of estimating temperature more reliably. In addition the 
estimates are consistently closer to the original values for cokriging of the raw data. For the 
residuals the standard errors from cokriging are smaller for 15 of the 25 validation points. This 
was somewhat surprising in relation to the fact that the variograms of the residuals did not 
appear to be an improvement over that of the raw data. For the residuals the trend was added 
back so that the values could be compared with the raw data. The estimates are not as 
consistently good as they are for cokriging with the raw data. 

Table 4. Comparison between the raw temperature data, the autokriged estimates and the 
cokriged estimates, and the cokriged estimates for the residuals and with the trend added back. 

Original Autokriging    Cokriging Cokriging residuals 
X      Y     Value Estimate SE Estimate SE Estimate Est+trend SE 

-127.05 37.90 54.0 53.33 2.48 53.32 2.43 0.5392   53.48 2.40 
-127.10 37.70 54.0 54.35 1.73 54.25 1.67 0.8142   53.71 1.91 
-126.50 33.50 60.0 60.03 1.63 60.07 1.56-1.3596   58.38 1.82 
-128.10 35.20 57.0 57.19 2.19 57.36 2.12-0.0677   57.96 2.16 
-127.75 37.90 53.0 53.86 1.55 53.64 1.49 0.5506   53.74 1.79 
-128.00 36.20 54.0 55.17 4.09 55.13 4.08-0.4151   56.08 3.84 
-126.60 37.50 54.0 53.17 2.63 53.24 2.60 0.3207  54.11 2.57 
-128.90 37.10 48.0 54.50 4.52 54.47 4.51-0.0800   55.76 4.03 
-129.40 37.00 55.0 55.01 5.43 55.01 5.42 0.1675   56.91 4.31 
-126.75 34.30 58.0 58.36 5.29 58.33 5.28-0.5767  58.26 4.30 
-127.65 37.45 56.0 53.82 2.99 53.75 2.97 0.2831   54.34 2.84 
-125.65 39.60 50.0 49.56 4.68 49.63 4.66 0.2680   49.52 4.02 
-129.01 35.10 59.0 57.95 1.96 57.87 1.93-0.5659   58.47 2.09 
-124.80 40.45 49.0 49.22 4.73 49.36 4.72 0.6924   48.36 3.86 
-128.30 41.80 33.0 42.68 4.71 42.71 4.68-2.4696   40.90 3.72 
-128.60 35.90 57.0 56.81 1.71 56.80 1.63-0.0015   57.47 1.83 
-126.50 36.75 54.0 53.60 3.01 53.22 2.97-1.7979   53.47 2.74 
-127.10 37.45 54.0 54.94 1.93 54.89 1.89 1.0006   54.88 2.10 
-128.20 36.40 58.0 54.79 3.35 54.76 3.33-0.4044   55.91 3.15 
-127.95 37.40 53.0 53.25 0.98 53.30 0.93 0.1380   54.47 1.53 
-129.40 36.03 58.0 56.87 1.50 56.92 1.43 0.5288   58.85 1.69 
-124.65 38.00 52.0 51.97 1.66 51.68 1.60-0.4415   53.86 1.81 
-126.40 34.80 58.0 57.45 5.02 57.54 5.00-0.6245   57.73 3.94 
-125.80 39.25 51.0 49.95 4.83 50.00 4.82 0.1461   50.22 4.18 
-130.40 42.30 45.0 47.26 6.34 47.38 6.33-0.3178  45.31 4.23 

The entire data set was cokriged as above, but this time using all of the elevation data. The 
estimates and the standard errors were mapped, Figures 3 to 5. Figures 3a and 4a show the 
maps of temperature from autokriged and cokriged estimates, respectively. There is 
remarkably little difference between them. Figure 5a shows the results of cokriging using the 
residuals and then adding the trend back. This is more different. This appears to show some 
distortion, however, it is difficult to be certain because we did not have the outline of Korea to 
superimpose on the estimates. This will be done at TEC. Figures 3b, 4b and 6b show the 
standard errors for temperature. They are slightly less for cokriging. These values show the 
pattern of sampling and also the coastline of the country. 



Ordinary kriged estimates of temperature for Korea 
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Figure 3: a) Map of estimates from autokriging of temperature for Korea, 
b) map of the standard errors from autokriging of temperature 



Cokriged estimates of temperature for Korea 
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Figure 4: a) Map of cokriged estimates of temperature for Korea, 
b) map of the standard errors from cokriging of temperature. 



Cokriged estimates of residuals of temperature with trend added back for Korea 
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b) map of the standard errors from cokriging the residuals of temperature. 



PartH 

Introduction 

In this report the first part of the vegetation analysis will be described. It covers the analysis of 
the quantitative data in surveys 1 and 2 which have been combined for this analysis in parts. 
The remaining analyses of the class data for surveys 1,2 and 4 will be part of the final report. 

Surveys 1 and 2 

Survey 1 was carried out in 1997 at A. P. Hill. The sample comprises several small transects 
that have a random starting positions within the seven strata of the training areas. The plot size 
corresponded with the SPOT pixel size of 20 m by 20 m. The points along the transects were 
at 100 m intervals (see Figure 6). This survey mainly embraced either hard or soft woodland 
areas of vegetation. The second survey was a square grid with an interval of 300 m covering 
the whole of our study site at A. P. Hill (Figure 7). Since there were many sites without 
quantitative woodland information, because it included grassland, buildings and hard standing, 
the sites with quantitative information were analysed with the data from the first survey. 

Sample 1    (170) 
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Figure 6: Map of sites for Survey 1. 
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Figure 7: Map of sites for Survey 2. 

Exploratory data analysis 

The summary statistics of the 17 quantitative variables were analysed for surveys 1 and 2 
separately. They are given in Tables 5 and 6. The skewness values are generally small showing 
that the statistical distribution does not depart seriously from normal, except for stem spacing 
(survey 1). This variable had one extreme value which was removed to obtain a near-normal 
distribution for the variogram analysis. Figures 8 and 9 show the histograms of the variables 
listed below for survey 1. The digital numbers for the three wavebands of the SPOT image that 
coincided with sites where the vegetation had been examined were also extracted and their 
summary statistics are given in Table 7 for both surveys. Their histograms are shown in Figure 
10. 

Variables analysed and their abbreviation: 

This part of the list contains those variables related to forest density (Set A): 

maxcc - maximum range of visual estimate of crown closure (%) 
ovstmin - minimum range of overstory height (ft) 
ovstmax - mamimum range of overstory height (ft) 
undstmn - minimum range of understory height (ft) 
undstmx - maximum range of understory height (ft) 



ba_f - estimate of basal area per hectare (metric units) 
stem - total stems in plot (count) 
bajot - sum of all basal area for each tree per plot (square metres) 
stemsp - average minimum distance between stems within each plot (metres) 

This part of the list contains those variables related to tree species (Set B): 

ba_so - percentage of total basal area that is softwood in each plot 
ba_ha - percentage of total basal area that is hardwood in each plot 
stem_so - percentage of total number of stems that are softwood in each plot 
stem_ha - percentage of total number of stems that are hardwood in each plot 
bad_so - percentage of dominant basal area that is softwood in each plot 
badha - percentage of dominant basal area that is hardwood in each plot 
stemd_so - percentage of dominant number of stems that are softwood in each plot 
stemd_ha - percentage of dominant number of stems that are hardwood in each plot 

Table 5: Summary statistics for vegetation measures for Survey 1 

Variable N Missing Mean Median Min Max Variance Standard 
deviation 

Skewness Kurtosis 

maxcc 169 67.04 70.0 0.0 100.0 543.3 23.31 -1.22 0.43 
minovst 169 73.72 80.0 15.0 110.0 395.1 19.88 -1.19 1.18 
maxovst 169 78.54 80.0 20.0 110.0 405.1 20.13 -1.32 1.29 
minunst 169 11.35 10.0 0.0 30.0 33.3 5.77 0.96 2.31 
maxunst 169 20.66 20.0 0.0 35.0 62.2 7.89 -0.70 0.28 
ba_f 168 34.36 34.3 2.4 76.2 199.4 14.12 0.05 0.31 
stem 169 20.44 19.0 0.0 81.0 112.9 10.62 1.96 7.01 
batjot 169 1.07 1.1 0.0 2.4 0.2 0.45 0.01 0.31 
stemsp 168 2 2.33 2.2 0.9 7.3 0.6 0.78 2.00 9.10 
ba_so 168 2 46.16 43.5 0.0 100.0 1487.1 38.56 0.13 -1.58 
baha 168 2 53.54 54.5 0.0 100.0 1487.1 38.56 0.13 -1.58 
stemso 138 2 41.01 33.3 0.0 100.0 1338.9 36.59 0.33 -1.41 
stemha 168 2 58.99 66.7 0.0 100.0 1338.9 36.59 0.33 -1.41 
bad_so 168 2 48.94 46.7 0.0 100.0 1610.3 40.13 0.06 -1.64 
bad_ha 168 2 51.06 54.3 0.0 100.0 1610.3 40.13 0.06 -1.64 
Stemd_ 168 2 49.14 48.8 0.0 100.0 1570.7 39.63 0.02 -1.62 
so 
Stemd 
ha 

168 2 50.86 51.2 0.0 100.0 1570.7 39.63 0.02 -1.62 



Table 6: Summary statistics for vegetation measures for Survey 2 

Variable N Missing Mean Median Min Max Variance Standard 
deviation 

Skewness Kurtosis 

maxcc 60 54 68.17 80.0 5.0 100.0 674.5 25.97 -0.99 -0.02 
minovst 0 114 * * * * * * * * 

maxovst 60 54 73.75 80.0 20.0 100.0 315.8 17.77 -1.32 1.52 
minunst 17 97 8.59 10.0 1.0 20.0 34.9 5.91 0.28 -1.07 
maxunst 54 60 15.11 15.0 3.0 25.0 23.9 4.89 -0.07 -0.31 
ba f 58 56 32.06 34.5 3.4 57.9 175.9 13.26 -0.35 -0.73 
stem 58 56 19.91 18.5 5.0 44.0 96.1 9.80 0.63 -0.29 
bat tot 58 56 1.07 1.1 0.1 1.8 0.17 0.42 -0.35 -0.73 
stemsp 58 56 2.50 2.4 1.2 5.0 0.57 0.76 1.05 1.19 
ba so 58 56 57.54 63.5 0.0 100.0 1360.3 36.88 -0.31 -1.46 
ba ha 58 56 42.46 36.5 0.0 100.0 1360.3 36.88 -0.31 -1.46 
stem so 58 56 50.33 52.1 0.0 100.0 1288.4 35.89 -0.05 -1.53 
stem ha 58 56 49.67 47.9 0.0 100.0 1288.4 35.89 -0.05 -1.53 
bad so 58 56 60.87 64.9 0.0 100.0 1472.5 38.37 -0.38 -1.43 
bad ha 58 56 39.14 35.1 0.0 100.0 1472.5 38.37 -0.38 -1.43 
Stemd_ 58 56 60.15 71.8 0.0 100.0 1520.1 38.99 -0.34 -1.52 
so 
Stemd 
ha 

58 56 39.93 28.2 0.0 100.0 1520.1 38.99 -0.34 -1.52 

Table 7: Summary statistics for the three wavebands from SPOT for Surveys 1 and 2 

Variable N Missing Mean Median Min Max Variance Standard 
deviation 

Skewness Kurtosis 

Red (1) 
Green 
(2) 
NIR(3) 

116 
116 

116 

54 
54 

54 

61.94 
36.33 

119.3 

61.0 
34.0 

121.0 

58.0 
32.0 

62..0 

80.0 
67.0 

148.0 

14.5 
33.56 

249.5 

3.81 
5.79 

15.79 

2.49 
3.17 

-0.55 

7.18 
11.71 

0.57 
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Figure 8: Histograms of variables in Set A of Survey 1. 
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Figure 10: Histograms of wavebands 1 (Red), 2 (Green), 3 (NIR) and NDVI for sites 
coinciding with Surveys 1 and 2. 

To assess which of these variables were likely to represent the variation the data most strongly 
a principal components analysis was done on the correlation matrix. The latter was used 
because it effectively standardizes the data. The first component accounted for 53.7% of the 
variation and the second 18%. The variables that 'loaded' most heavily on the first component 
were: 

ba_so, ba_ha, stem_so, stem_so, stem_ha, bad_so, bad_ha, stemd_so and stemjia. 

The variables that 'loaded' most heavily on the second component were: 

maxcc, ba_f, stem, batot and stemsp. 



A set of variables that is considered to express the variation and summarise it adequately is: 

maxcc, ba_f, stem, stemsp, ovstmax, undstmx and ba_so. 

These are based on the distribution of the variables in the plane of PCI and PC2 (Figure 11). 
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Figure 11: Plot of variables based on their loadings in the plane of PCI and PC2. 

Table 8 gives the correlations for the vegetation measures and the DNs of the wavebands. In 
general these are small for the vegetation measures and DNs. Those for NIR are the largest for 
maxcc, stem_so, ste_ha, stemd_so and stem_ha. There are some strong correlations for the 
vegetation measure which are to be expected, for example ba_so and ba_ha which add to 
100%. 



Table 8. Correlations for the vegetation measures and the three wavebands from the SPOT 
image. 

*** Correlation matrix *** 
bandl 1.000 
band2 0.960 1.000 
band3 -0.205 -0.308 1.000 

cc 0.023 0.017 0.227 1.000 
ovstmin 0.036 0.018 0.178 0.205 1.000 
ovstmax 0.030 0.021 0.198 0.237 0.956 1.000 
undstmn -0.148 -0.113 0.076 0.145 0;196 0.217 1.000 
undstmx 0.073 0.080 0.099 0.260 0.427 0.487 0.515 

ba_f 0.179 0.177 0.087 0.518 0.557 0.594 0.141 
stem 0.081 0.098 -0.021 0.474 -0.346 -0.306 0.021 

ba_tot 0.178 0.177 0.087 0.518 0.557 0.594 0.141 
ba_so 0.005 -0.005 -0.182 -0.260 -0.596 -0.625 -0.014 
ba_ha -0.005 0.005 0.182 0.260 0.596 0.625 0.014 

stem_so 0.004 0.010 -0.224 -0.230 -0.676 -0.687 -0.053 
stem_ha -0.004 -0.010 0.224 0.230 0.676 0.687 0.053 
bad_so 0.002 -0.015 -0.158 -0.276 -0.541 -0.572 0.007 
bad_ha -0.002 0.015 0.158 0.276 0.541 0.572 -0.007 

stemd_so 0.000 -0.006 -0.211 -0.274 -0.547 -0.568 0.009 
stemd_ha 0.000 0.006 0.211 0.274 0.547 0.568 -0.009 

stemsp -0.007 -0.033 -0.030 -0.456 0.182 0.136 -0.015 

bandl band2 band3 cc ovstmin ovstmax unds tmn 

unds tmx 1.000 
ba_f 0.396 1.000 
stem -0.014 0.260 1.000 

ba_tot 0.396 1.000 0.260 1.000 
ba_so -0.146 -0.385 0.267 -0.385 1.000 
ba_ha 0.146 0.385 -0.267 0.385 -1.000 1.000 

stem_so -0.207 -0.385 0.309 -0.385 0.941 -0.941 1.000 
stem_ha 0.207 0.385 -0.309 0.385 -0.941 0.941 -1.000 
bad_so -0.116 -0.376 0.243 -0.376 0.990 -0.990 0.894 
bad_ha 0.116 0.376 -0.243 0.376 -0.990 0.990 -0.894 

stemd_so -0.121 -0.349 0.269 -0.349 0.972 -0.972 0.939 
stemd_ha 0.121 0.349 -0.269 0.349 -0.972 0.972 -0.939 

stemsp -0.174 -0.302 -0.660 -0.302 -0.122 0.122 -0.189 

undstmx ba_f stem ba_tot ba_so ba_ha stem_so 

stem_ha 1.000 
bad_so -0.894 1.000 
bad_ha 0.894 -1.000 1.000 

stemd_so -0.939 0.966 -0.966 1.000 
s temd_ha 0.939 -0.966 0.966 -1.000 1.000 

stemsp 0.189 -0.076 0.076 -0.137 0.137 1.000 

stem_ha bad_so bad_ha stemd_so stemd_ha stemsp 



Variogram analysis 

Experimental variograms were computed for all of the variables listed above for the combined 
data from surveys 1 and 2. Variograms were computed in four directions at the outset, but the 
number of sites is marginal for this. For set A variables the directions of maximum and 
minimum variation are not consistent, but for set B variables the variation in direction NNE to 
SSW (o) have the longest range of spatial dependence and the largest sill variances and those 
at right angles have the shortest ranges and the smaller sill varinaces (*) (Figures 12 and 13). 

Figures 14 and 15 show the experimental omnidirectional variograms for the two sets of 
variables from surveys 1 and 2. Those that show reasonable spatial structure are: maxcc, 
ovstmin, ovstmax, undstmn, stem, baso, ba_ha, stem_so, stem_ha, bad_so, bad_ha, stemd_so 
and stemdjia. For the twin variables, such as ba_so and ba_ha the variograms are identical for 
the reasons given earlier. The following variables were modelled: maxcc, overstory height 
(derived from ovstmin and ovstmax), understory height (derived from undstmn and undstmx), 
ba_f, stem, stem spacing, baso (equivalent to ba_ha also), stem_so, badso and stemd_so. In 
addition the multivariate variogram from this analysis was computed and modelled, also 
elevation, and the three wavebands and NDVI. They are shown in Figures 16 to 19. 

Table 7 gives the model parameters of the variables modelled. The experimental variograms of 
many of the properties in Table 7 are somewhat erratic. This could be related to the irregular 
sampling scheme. However, there appears to be some evidence of periodicity in several 
variograms with wavelengths of between 500 m and 700 m. A previous report that contained 
transects of the pixels to match the vegetation ones also showed periodicity in the DNs. There 
appears to be some relation between the range of spatial dependence of elevation and several 
of the vegetation measures. The multivariate variogram has identified a short range component 
of variation of just over 300 m which matches with the short range component of NIR. The 
variograms of the vegetation classes will be examined in the next report. The models fitted to 
directional variograms of baso are revealing: the variation in direction 135° is 462 m and that 
in direction 45° is 1271 m. This suggests that the different ranges might reflect some 
anisotropy in the variation. This was identified in the image data, but because the sill heights 
were different this signalled zonal anisotropy which cannot be corrected simly. It suggests that 
there are distinct strata present and this is evident from the areas with different kinds of 
vegetation. There are also distinct landscape units which will be explored in the next report. 
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Figure 12: Directional experimental variograms for Set A variables for Surveys 1 and 2. 
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Figure 13: Directional experimental variograms for Set B variables for Surveys 1 and 2. 
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Figure 15: Omnidirectional experimental variograms of Set B variables from Surveys 1 and 2. 



Table 9. Variogram model parameters. 

Variables Model type Nugget Sill Sill Range Range 
variance Cl c2 a, (m) a2(m) 

Canopy closure Double 
spherical 

0 397.4 218.3 129.0 1730.0 

Overstory height Circular 237.9 212.3 1850.0 
Understory Circular 19.2 12.6 1391.0 
height 
Basal are (field) Spherical 69.9 126.5 232.0 
Stem Pentaspherical 21.4 65.7 380.0 
Stem spacing Circular 0.305 0.193 407.0 
ba_so.ha Double 

spherical 
0 980.2 563.5 182.0 1553.0 

ba so/ha (45°) Circular 662.3 1271.0 1271.0 
ba_so/ha (135°) Circular 428.0 841.4 462.0 
stem_so/ha Spherical 892.7 838.3 1428.0 
bad_so/ha Spherical 909.1 819.9 1274.0 
stemd_so/ha Circular 839.9 869.7 1432.0 
Multivariate Circular 6.05 3.08 309.9 
variogram 

Elevation Circular 93.05 312.5 1562.0 
Red (1) Pentaspherical 2.21 17.89 906.0 
Green (2) Double 

spherical 
0 20.6 19.7 386.0 1047.0 

MR (3) Circular 99.24 145.0 673.6 
NDVI Double 

spherical 
0.0015 0.00307 0.00202 666.8 1261.0 
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Figure 16: Experimental variograms and fitted models 
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Figure 17: Experimental variograms and fitted model 



band 

CD 
O c 
a 

0 200 400 600 8001000 200 400 600 80(2000 

Lag Distance/m 

CD 
O 
c= 
D 

band 2 

0 200 400 600 8001000 200 400 600 80(2000 

Lag Distance/m 

CD 
C_> 

o 

300 

200 

100- 

band 3 

* * * *» 

-i       i 1 1 1 1 r- 

0   200 400 600 800100012001400160018002000 

Lag Distance/m 

0.010- 
NDVI 

0.008- 

0.006- 

0.004- 

CD 
C_> 
c 
o 
o > •/ 

0.002- '/ ■ 

0.000- 
0 500 1000 1500 

lag distance/15m 

Figure 18: Experimental variograms and fitted models 



Cross variograms 

The theory for computing cross variograms between two or more variables is given at the 
beginning of the report. Cross variograms were computed between the vegetation measures 
and the values from the three SPOT wavebands. Those selected and shown in Figures 19 to 22 
show some relation between the variables. For band 1 (Red) there is a negative relation 
between maxcc, unstmn and stem, and a positive relation between stem spacing (Figure 18). 
The relations with the other variables is not clear. For band 2 (Green) there are clear negative 
relations with maxcc and stem, and a positive relation with stem spacing (Figure 20). For band 
3 (NIR) there are positive relations between maxcc, ovstmax, stem and ba_f, and a negative 
relation with ba_so (Figure 21). Cross variograms with elevation are give in Figure 22. Overall 
their relations with the vegetation measures are weak. 
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Figure 19: Cross experimental variograms between band 1 (Red) and selected vegetation 
measures. 
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Figure 20: Cross experimental variograms between band 2 (Green) and selected vegetation 
measures. 
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Figure 21: Cross experimental variograms between band 3 (NIR) and selected vegetation 
measures. 
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Figure 22: Cross experimental variograms between elevation and selected vegetation measures. 
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